

Determination of Drugs in Human Blood via Bidirectional Solid Phase Extraction Oya Yeter, Ph. D.

Department of Chemistry, Ministry of Justice, Council of Forensic Medicine, Istanbul

APPLICATION NOTE | www.LCTech-online.com As of: November 2019, Version: 1.4

Content

1. Ir	ntroduction	3
2. N	Method Development	4
2.1	Reagents and Materials	4
2.2	Sample Preparation	4
3. Ir	Instrumentation	5
3.1	Bidirectional SPE (BD-SPE) with FREESTYLE SPE	5
3.2	Software Protocol	6
3.3	LC-MS/MS Measurement	7
4. R	Results	8
5. C	Conclusions	14
6. A	Acknowledgements	15

1. Introduction

The analysis of forensic blood samples via Solid Phase Extraction (SPE), either post-mortem or of living persons, is a standard procedure in forensic labs for clarification of fatal cases or when drugs of abuse or toxic substances might have played a role in a criminal case. In the following application note an automated approach is described that uses the so-called bidirectional SPE (BD-SPE); this specific approach is applied when either difficult to process matrices are processed, or the likelihood of cross-contamination should be fully excluded from the very beginning. In particular the latter aspect is ultimately important in order to avoid any wrongful conviction.

In brief, the approach uses standard 3 mL SPE cartridges which are processed in a normal way in terms of conditioning, washing, drying, and elution steps, whereas the critical loading step, where the matrix enters the automation system, is loaded reversely. This means the diluted sample, e. g. blood, is not loaded on top of the cartridge, but aspirated via the Luer tip into the sorbent. As the aspirated sample is discarded into the waste in the "normal" direction afterwards, it never enters the system and passes the sorbent twice. Therefore, it was consequently called bidirectional SPE.

Fig. 1: Blood sample

2. Method Development

- **Reagents and Materials** 2.1
- Ethyl acetate (p. a.)
- Methanol (LC/MS grade)
- Water (p. a.)
- Acetic acid (p. a.)
- 0.05M Ammonium acetate, pH 7.2 (LC/MS grade)
- Formic acid (LC/MS grade)
- Oasis HLB, 60 mg (Waters, USA)

2.2 Sample Preparation

The method can be applied to any blood samples typical in forensic investigations. Therefore, the blood originates either from living or deceased persons and thus represents all stages of biological degradation.

The sample preparation is straightforward and keeps the sample as unaltered as possible.

In this application note the samples are measured with LC-MS/MS. After a solvent exchange of the resulting eluates, and derivatisation with the corresponding derivatisation reagents, a measurement with GC-MS/MS is also possible.

- Add 2.5 mL water to 0.5 mL blood sample •
- Vortex thoroughly •
- Centrifuge at 5,000 rpm for 10 min.
- Pour the supernatant into a 10 mL sample vial •
- Put the sample into the FREESTYLE SPE system

3. Instrumentation

3.1 Bidirectional SPE (BD-SPE) with FREESTYLE SPE

The following components are needed to process the BD-SPE automatically with a FREESTYLE SPE. In brief the blood sample is filled in 10 mL vials, the system equipped with 3 mL cartridges and the eluate vials.

After processing the combined eluates were evaporated to dryness in a nitrogen blow-down apparatus, filled up with the HPLC solvent and filled into HPLC vials for measurement with LC-MS/MS.

1.	FREESTYLE BASIC	P/N	12663-12
2.	FREESTYLE SPE	P/N	12668
3.	Rack for solvent delivery	P/N	13156
4.	Rack for up to 18 SPE columns	P/N	13946-AD (2 needed)
5.	Column adapter for 3 mL SPE columns	P/N	14612 (2 needed)
6.	Cap for SPE-cartridges 3 mL	P/N	14919 (2 needed)
7.	Tray for 54 test tubes, 100 x 16 mm	P/N	13948
8.	Sample rack, 18 x 10 mL-vials	P/N	14711 (2 needed)
9.	Vial, flat bottom; 10 mL	P/N	V0010
10.	SPE Software upgrade "Forensic"	P/N	14773

14 mL 100 x 16 mm reagent tubes have to be ordered from any local supplier.

3.2 Software Protocol

The following setting is used to process the samples with the BD-SPE on the FREESTYLE SPE system.

LCTech FreeStyle - Report on Methods: SPE

Date: 15.11.2016 Time: 10:37:47

Name: FAST_5ML	spe	SPE Column: LCTech_3ml	col	
Extension cannula:		no		
Processing speed selection)'	Speed up (aqueous solutions)		
Rinsing intensity:		Standard rinsing cycle		
Turising intensity.		Standard finding cycle		
Use pressure limitation fund	ction during loading and washing:	yes		
Pressure limit for syringe pu	ump:	231 digits		
Maximum count of triggered	d samples in series:	3 Sample /s		
Sten: Conditioning		Basic type: Conditioning		Stop: ID: 688
otep: conditioning		Dasic type. Conditioning		Otep 10. 000
Kolumo: 8 ml	Suction Speed: 90 ml/min	Disponsing Speed: 10 ml/min	Port: 7 Water	
Volume. o mi	Desetitione: 0	Dispensing Speed. To minim	Fort. 7 Water	
		W	D'	
	vvalting Time after Dosage: 0 sec.	waiting Time after Step: 0 sec.	Dispense: into vvaste	
Step: Drying		Basic type: Drying - Drying by defined	air volume	Step: - ID: 689
·				
Mir volume: 10 ml	Suction Speed: 100 ml/min	Dispensing Speed: 70 ml/min	Dispense: into Waste	
Step: Load		Basic type: Load - Transfer Sample-Al	auot through tip of SPE colum	n Step: - ID: 690
Ctop: Loud		Busic (Jpc. Loud Transfer Campie 7.		
Kolume: 5 ml	Suction Speed: 5 ml/min	Dispensing Speed: 5 ml/min		
Viel Tupe: Tupe1@10	Maiting Time after Decage: 15 and	Waiting Time offer Step: 150 and		
viai Type. Type (@10	Walling Time alter Dosage. 15 sec.	Waiting Time after Step. 150 sec.	Disasas istavisla No	and an afficial at d
			Dispense: into viais Nu	mber of vials: 1
200 0.490 to 0.000 000			Via	al Type: Type1@10
without rinsing of vial				
Step: Washing		Basic type: Washing		Step: - ID: 691
Volume: 10 ml	Suction Speed: 90 ml/min	Dispensing Speed: 5 ml/min	Port: 7 Water	
Volume. To the	Repetitions: 0	Disperioning opeod. o marmin		
	Waiting Time offer Desego: 0 cos	Waiting Time offer Stop: 0 coo		
	Devine time: 50 min	Diagonage into Wests		
	Drying time. 50 min	Dispense: Into waste		
Step: Drying		Basic type: Drying - Nitrogen drying by	defined time	Step: - ID: 692
	n 120 soc		Disponso: into Wasto	
Syng ane warna oge	11 120 Sec.		Dispense. Into waste	
Step: Eluting		Basic type: Eluting		Step: - ID: 693
Molume: 1 ml	Suction Speed: 30 ml/min	Dispensing Speed: 1 ml/min	Port: 1 MetOH	
	Repetitions: 0			
	Waiting Time after Dosage: 0 sec.	Waiting Time after Step: 0 sec.		
	Drying time: 0 min		Dispense: into vials Nu	mber of vials: 1
			Via	al Type: Type3@14
×				Hans 2216 - 3221
Stop: Eluting		Pania type: Elutina		Stop: ID: 604
Step. Eluting		Basic type. Eluting		Step ID. 694
Wolumo: 1 ml	Suction Spood: 20 milmin	Disponsing Spood: 1 ml/min	Port: 9 Etil Acotot	
volume. 1 mi	Benetitiane: 0	Dispensing Speed. I minimit	FUIL O EIII ASetat	
	vvaiting Time after Dosage: 0 sec.	vvalting Time after Step: 0 sec.		
	Drying time: 0 min		Dispense: same vial as ste	ep ID: 693
Step: Drying		Basic type: Drying - Drying by defined	air volume	Step: - ID: 695
🌭 Air volume: 10 ml	Suction Speed: 100 ml/min	Dispensing Speed: 30 ml/min	Dispense: stay on actual p	position
			· · · · · · · · · · · · · · · · · · ·	

Fig. 2: Method report

3.3 LC-MS/MS Measurement

Analytical instrumentation:

Agilent 1290 UPLC, /	Agilent 6460 Jetstream (AJS) Triple Quad LC/MS
Mobil Phase A:	2 mM Ammonium acetate, 0.1 % formic acid (in 5 % methanol)
Mobil Phase B:	Methanol
Analytical Column:	Poroshell 120 EC-C18
	(4.6 x 150 mm; 2.7 micron; Agilent Technologies, USA)

Gradient Composition Method (Tab. 1)

Time (min.)	A (%)	B (%)	Flow (mL/min)
0	90	10	0.6
0.3	90	10	0.6
3	20	80	0.6
7	5	95	0.6
11.10	90	10	0.6

Tab. 1: Chromatographic conditions

Fig. 3: BD-SPE loading step of a blood sample at the Istanbul Forensic Lab

4. Results

All analytes shown below were quantified against external calibrations measured with the corresponding analytical standards in typical concentration ranges (1 - 100 ng/mL) expected for human blood. The data represent a long term validation process over several months.

Tab. 2 and 3 show the recoveries of 162 analytes. Tab. 1 represents standard drugs and pharmaceuticals, respectively, whereas Tab. 3 shows 64 new synthetic drugs. All recoveries were obtained at a concentration of 100 ng/mL.

	Compound	Recovery [%]
1	6-Acetylmorphine	47.7
2	7-Aminoclonazepam	74.0
3	Alprazolam	71.4
4	Amisulpride	52.5
5	Amitriptyline	27.6
6	Amlodipin	62.2
7	Amphetamine	43.0
8	Atenolol	30.7
9	Atropin	59.4
10	Benzoylecgonine	45.7
11	Biperiden	58.2
12	Bromazepam	45.0
13	Buprenorphine	19.6
14	Carbamazepine	70.1
15	Chlordiazepoxide	5.4
16	Chlorpheniramine	51.2
17	Chlorpromazine	26.2
18	Citalopram	52.6
19	Clobazam	91.3
20	Clomipramine	56.9
21	Clonazepam	58.3

	Compound	Recovery [%]
22	Clozapine	32.0
23	Cocaine	43.2
24	Codeine	30.8
25	Desipramine	36.4
26	Dextromethorphan	30.9
27	Diazepam	96.9
28	Diclofenac	53.2
29	Diltiazem	60.4
30	Diphenhydramine	47.8
31	Doxepin	27.6
32	Doxylamine	72.0
33	Etodolac	70.1
34	Famotidine	19.8
35	Fentanyl	77.3
36	Fluconazole	23.1
37	Flunitrazepam	16.6
38	Fluoxetine	34.2
39	Flurazepam	40.6
40	Fluvoxamine	39.7
41	Haloperidol	37.6
42	Hydroxyzine	58.9
43	Imipramine	114.0
44	Ketamine	48.4
45	Lansoprazole	20.6
46	Lidocaine	63.7
47	Loperamide	56.1
48	Lorazepam	93.8
49	MDA 3,4-Methylenedioxyamphetamine	92.0
50	MDEA 3,4-Methylenedioxyethamphetamine	72.2

	Compound	Recovery [%]
51	MDMA 3,4- Methylenedioxymethamphetamine	55.4
52	Metformin	15.0
53	Methadone	67.0
54	Methamphetamine	45.7
55	Methylecgonine	7.4
56	Metoclopramide	65.8
57	Metoprolol	112.2
58	Metronidazole	4.2
59	Mianserin	32.6
60	Midazolam	90.0
61	Mirtazepine	55.2
62	Moclobemide	79.7
63	Morphine	60.0
64	Naproxen	32.3
65	Nifedipine	76.8
66	Nordiazepam	78.1
67	Nortriptyline	29.1
68	Opipramol	59.3
69	Ornidazole	17.4
70	Oxazepam	99.2
71	Oxcarbazepine	35.3
72	Pantoprazole	86.8
73	Paracetamol	5.9
74	Paroxetine	25.5
75	Pentobarbital	17.8
76	Pentoxifylline	22.2
77	Pethidine	42.7
78	Pheniramine	74.1
79	Phenobarbital	16.8
80	Phenytoin	91.6

	Compound	Recovery [%]
81	Prilocaine	52.2
82	Propafenone	80.2
83	Propranolol	80.2
84	Propyphenazone	39.2
85	Pseudoephedrine	26.5
86	Quetiapine	50.0
87	Risperidone	75.0
88	Sertraline	39.9
89	Sildenafil	91.3
90	Tadalafil	69.9
91	THC Δ9-Tetrahydrocannabinol	122.0
92	тнс-соон	60.0
93	Thiopental	40.5
94	Thioridazine	24.9
95	Tramadol	77.7
96	Vardenafil	83.4
97	Venlafaxine	46.2
98	Verapamil	69.4

Tab. 2: Standard drugs and pharmaceuticals

	Compound	Recovery [%]
1	(+-) CP 47,497 C8	10.0
2	(+-) CP 47,497	5.8
3	(+-) WIN 55,212-2	82.4
4	(+-) CP 55,940	34.1
5	5-F-AKB-48-4-hydroxypentyl	118.6
6	5-F-PB-22-3-carboxy-indole	60.8
7	5-F-AB-Pinaca	97.2
8	5-F-AKB-48	40.6
9	5-F-ADB	69.9
10	AB-Chminaca	79.7
11	AB-Fubinaca-M2	94.4
12	AB-Pinaca-5-hydroxylpentyl	100.4
13	AB-Pinaca-pentanoic acid	91.8
14	AB-Chminaca-M1	92.5
15	AB-Chminaca-M2	104.3
16	ADB-Pinaca-pentanoic acid	92.5
17	ADB-Pinaca	118.3
18	AKB-48-N-5-hydroxypentyl	84.8
19	AKB-48-N-pentanoic acid	105.1
20	AM 2201	85.8
21	AM 2201-6-hydroxyindole	36.0
22	AM 2201-N-4-hydroxypentyl	36.1
23	HU 210	6.7
24	JWH 0814-hydroxynaphthyl	40.0
25	JHW 081 N-5-hydroxypentyl	50.5
26	JWH 122 N-4-hydroxypentyl	82.7
27	JWH 122 N-5-hydroxypentyl	82.7
28	JWH 203 N-pentanoic acid	12.4
29	JWH 203	51.3

	Compound	Recovery [%]
30	JWH 210 5-hydroxyindole	64.5
31	JWH 210 N-4-hydroxypentyl	66.0
32	JWH 210 N-5-hydroxypentyl	66.0
33	JWH 210 N-pentanoic acid	85.4
34	JWH 210	22.6
35	JWH 250 N-4-hydroxypentyl	60.7
36	JWH 250 N-pentanoic acid	39.4
37	JWH 398 N-5-hydroxypentyl	74.9
38	JWH 398 N-pentanoic acid	77.6
39	JWH 018 N-pentanoic acid	53.0
40	JWH 018	49.3
41	JWH 018 N-5-hydroxypentyl	5.4
42	JWH 019	32.0
43	JWH 073	61.6
44	JWH 073 4-hydroxybutyl	25.1
45	JWH 073 N-butanoic acid	16.4
46	JWH 081	40.4
47	JWH 200	42.1
48	JWH 201	71.3
49	JWH 250 N-5-hydroxypentyl	61.4
50	JWH 250	26.8
51	MAM 2201 4-hydroxypentyl	44.5
52	MAM 2201 N-pentanoic acid	69.0
53	MAM 2201	71.8
54	PB-22-3-carboxyindole	50.9
55	RCS-4	76.0
56	RCS-4-N-5-carboxypentyl	65.8
57	RCS-4-N-5-hydroxypentyl	67.2
58	RCS-8	31.6
59	UR-144 N-5-hydroxypentyl	84.0

	Compound	Recovery [%]
60	UR-144 N-pentanoic acid	81.3
61	UR-144	35.6
62	XLR-11 6-hydroxyindole	47.6
63	XLR-11 N-4-hydroxypentyl	47.1
64	XLR-11	57.0

Tab. 3: Synthetic drugs

Recovery Values: 4.2 - 122 %

Repeatability within a day, n = 6: 0.8 -10 % RSD

Reproducibility for 5 days work: 2.3 - 18 % RSD

From the data it can be seen that the performance criteria obtained with this approach meet the requirements for a screening tool in forensic analysis of blood samples even at advanced degradation stages.

Cross-contamination measurements conducted with samples spiked at a level of 10 ppm showed no measurable signals in blanks processed afterwards. Thus any wrongful conviction can definitely be excluded.

5. Conclusions

The BD-SPE approach is fit-for-purpose in the field of forensic investigations in routinely conducted blood sample analysis, where the blood samples may originate from living as well as deceased persons.

The sample preparation is reduced to a minimum thus avoiding any alteration of the sample and its chemical nature, respectively.

The methodology may be applied to acidic, neutral, and basic chemicals that are relevant in typical routine forensic examinations, such as illicit drugs, pharmaceuticals or toxic substances.

Due to the unique approach any cross-contamination is explicitly excluded as the sample never enters the automation system.

The recoveries are sufficiently high for a routine screening method, show an excellent repeatability as well as reproducibility, and thus can be considered as very robust.

6. Acknowledgements

For the excellent cooperation and all the work presented herein LCTech would like to thank our collaborators from Turkish Republic Ministry of Justice Council of Forensic Medicine Ass. Prof. Yalcın BUYUK, the head of the Council and Mr. Ismail ATES, department head of Chemistry in Istanbul.

Fig. 4: Complete Set-up of the robotic system FREESTYLE at the Istanbul Forensic Lab

Contact

LCTech GmbH Daimlerstraße 4 84419 Obertaufkirchen Germany SOLUTIONS BY

Tel.: +49 8082 2717-0 Fax: +49 8082 2717-100 E-Mail: info@LCTech.de

www.LCTech.de www.LCTech-online.com

